\(\int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx\) [108]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 72 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {b x \sqrt {-1+c x} \sqrt {1+c x}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{c^2 d} \]

[Out]

-b*x*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/(-c^2*d*x^2+d)^(1/2)-(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^2/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {5914, 8} \[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{c^2 d}-\frac {b x \sqrt {c x-1} \sqrt {c x+1}}{c \sqrt {d-c^2 d x^2}} \]

[In]

Int[(x*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

-((b*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2])) - (Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(c^
2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 5914

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*
(-1 + c*x)^p)], Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a,
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{c^2 d}-\frac {\left (b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int 1 \, dx}{c \sqrt {d-c^2 d x^2}} \\ & = -\frac {b x \sqrt {-1+c x} \sqrt {1+c x}}{c \sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} (a+b \text {arccosh}(c x))}{c^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.18 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {\sqrt {d-c^2 d x^2} \left (a-a c^2 x^2+b c x \sqrt {-1+c x} \sqrt {1+c x}+\left (b-b c^2 x^2\right ) \text {arccosh}(c x)\right )}{c^2 d (-1+c x) (1+c x)} \]

[In]

Integrate[(x*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

(Sqrt[d - c^2*d*x^2]*(a - a*c^2*x^2 + b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + (b - b*c^2*x^2)*ArcCosh[c*x]))/(c^2
*d*(-1 + c*x)*(1 + c*x))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(157\) vs. \(2(64)=128\).

Time = 0.62 (sec) , antiderivative size = 158, normalized size of antiderivative = 2.19

method result size
default \(-\frac {a \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (-1+\operatorname {arccosh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (1+\operatorname {arccosh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )\) \(158\)
parts \(-\frac {a \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (-1+\operatorname {arccosh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (1+\operatorname {arccosh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )\) \(158\)

[In]

int(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-a/c^2/d*(-c^2*d*x^2+d)^(1/2)+b*(-1/2*(-d*(c^2*x^2-1))^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(-1+a
rccosh(c*x))/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(1+arcc
osh(c*x))/c^2/d/(c^2*x^2-1))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.62 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {\sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} b c x - {\left (b c^{2} x^{2} - b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (a c^{2} x^{2} - a\right )} \sqrt {-c^{2} d x^{2} + d}}{c^{4} d x^{2} - c^{2} d} \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*b*c*x - (b*c^2*x^2 - b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 -
1)) - (a*c^2*x^2 - a)*sqrt(-c^2*d*x^2 + d))/(c^4*d*x^2 - c^2*d)

Sympy [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

[In]

integrate(x*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.88 \[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\frac {b \sqrt {-d} x}{c d} - \frac {\sqrt {-c^{2} d x^{2} + d} b \operatorname {arcosh}\left (c x\right )}{c^{2} d} - \frac {\sqrt {-c^{2} d x^{2} + d} a}{c^{2} d} \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

b*sqrt(-d)*x/(c*d) - sqrt(-c^2*d*x^2 + d)*b*arccosh(c*x)/(c^2*d) - sqrt(-c^2*d*x^2 + d)*a/(c^2*d)

Giac [F]

\[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )} x}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x/sqrt(-c^2*d*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \text {arccosh}(c x))}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

[In]

int((x*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2),x)

[Out]

int((x*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(1/2), x)